POAYSAAS »a mmnme— A T "y

Example 2.1 The following is a 5x5 Latin square for data
waken from a manurial experiment with sugarcane. The five treatments
were as follows :
| A : no manure,

’ B : an inorganic manure,
C, D and E : three levels of farm-yard manure.

TABLE 24
PLaN AND YIELD OF SUGARCANE (IN SurtaBLE UNITS) PER PLOT
- . Column
I II IT1 IV \"
‘ I A E D C B
: 52-5 463 44-1 48-1 40-9
{
| I 4 # i E C
| 44-2 429 51-3 49-3 32:6
Bping s - 2 & E
49-1 473 381 41-0 472
C D E B
’ v A
43'2 42'5 67'2 55.1 45.3
v E ¢ B A D
j NC— 470 432 467 460 43.2411

'“ynﬂ:v:bovedmmﬁnd out if there are any treatment effects.
row totals are : 2319 33"‘““’
w 220-3, 2227, 25

totals are : 2360, 222.2, 2474, 239'5 and 20775
» .m J 242*4 2347 205?‘ 2154) 2SN I0an
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40
(1,1 54_:2).3. - §3,2963333.

The correction factor = 2
Total 8= (52:5)" +(46:3)" +..+(46° 0)? +(43:2)" ~53,296.3333
0 h
:54,27351~ 53,296 1333=977:1767.

(231-9)” +(220- 3)? (222 7)? +(253-3)" +(226- 1)?
Row S§ = A ol o

- 53,296.3333
2 26708709 _ 3 296.9333 = 53,437 4180 — 53,296 3333
5
= 141.0847,

(236-0)? +(222-2)* +(247-4)% +(239-5)* +(209- »2)1’
5

Column SS =

~53,296-3333

(
-2(’-7-‘129}—3—53 296-3333 = 53,480 0980 — 53,296 - 3333

= 1837647,
Treatment 5 = (242:4)" +(234:7)? +(205-2)? +(215-0)% +(257-0)?

~53,296:3333
_ 268,222.89
el 53,296-3333 = 53,644 .5780 — 53,296-3333
= 34§ 2447,
Error S§=Total 55~ Row 58 ~Column SS
s (B 1 ~Treatm
=304-0826. D
TABLE 2.5
ANALYSIS OF VAriANCE TABLE FoR THE LSD
Smfrc.e of df SS
variation Ms FO
Row
4
1837647
Treatments e
< ’ 3482447 87-0612
12 3040826 %ir 2 3436
Total 24 1767 | —
As F, —
B 2 704 and 0 4.1223.26 ot
§ is accepted at the l% leve] but tis YPOIhuia of no treat-

at the 5% leve],
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6-13. BALANCED INCOMPLETE BLOCK DESIGNS

The precision of the estimate of a treatment effect depends anthenum_ber ofmpﬁcau%:
of the treatment i.e., the larger is the number of replications, the more is the precision Al
similar thing holds for the precision of the estimate of the difference between two treatment
effects. If two treatments occur together in a block, then we can say that these are replicateq
once in that block. Similarly, if there are say, p blocks in a design in e?ch of wh?ch the twy |
treatments occur together, then the pair of treatments is said to be replicated p times in the
design. The precision of the estimate of the difference between two treatments depends -
the number of replications of the two treatments.

If in a block the number of experimental units or plots is smaller than the number of
treatments, then the block is said to be incomplete and a design constituted of such blocks i
called an ‘incomplete block design’.

As the name suggests, the balanced incomplete block designs are arranged in blocks or
groups that are smaller than a complete replication in order to eliminate heterogeneity to 3
greater extent than is possible with randomised block design and Latin square design. These
designs were introduced by F. Yafes in 2 paper “A new method of arranging variety trials
involving a large number of varieties” Journal Agr. Sai. 26, 424-455, 1936.

In factorial experiments confounding enables us to reduce the size of the block at the cost
of information on certain treatment comparisons which may be re
But in Balanced Incomplete block designs (BIBD) which were de
plant breeding and agriculture selection

Incomplete Block Design (I.B.D.). Definition. An tncomplete block design is one
having v treatments and b blocks each of size k such that each of the treatments is replicated r

times and each pair of treatments occurs once and only once in the same block. v, b, randk |
are known as the parameters of the LB.D.

Balanced Incomplete Block Design (BIBD). Definition. An arrangement of v
treatments in b blocks of k plots each (k < v) is known as BIBD, if

(z) each treatment occurs once and only once in r blocks and
(1) each pair of treatments occurs together in A blocks.

latively of less importance.
veloped for experiments in
of all comparisons among pairs of treatments is

| : number of replicates, which is same for each
m:ﬁl]')l:m of B.LB.D. The integers v, r, b, k and A are called the parameters of

- v =number of varieties or treatments, b = number of blocks
k = _ rm number of replicates for each treatment

,‘ , ‘ which agamb; o:{. treatl;l;nts occurs together or number of times
> l he O 1 : . . a
r the existence of a BI B oWing parametric relations serve as
- @B Mv-D=rk-1), anq i) b
B ‘ 2 v (Fisher’s Inequality.)
1 these reamuuﬂlemgevltos-SonB.I.B.D. :
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|

| o e .(6:261)
Theorem 6'1‘

of. Since there are v treatments each replicated r times, total number of plots in the
i ;ﬁ:s ,;r Further since there are b blocks each of size k, there are bk plots in all.
esl -

Hence, vr = bk

¢-13-2. Incidence Matrix. Associated with anv design D is the incidence matrix N = (n;),
s vii=1,2..,b0) where n;; denotes the number of times the ith treatment occurs
1=1,4 9 ) y &y ’ )

gn the jth block. Thus by the definition of a BIBD,

ni Ni9 e Ny —]
N1 nao e Ngp
3 Nyt Ny covnns Nyp B
where n; =1, if ith treatment occurs in the jth block. ...(6:262a)

=0, otherwise

Remark. Since in case of BIBD, n; can take only two values 0 or 1, BIBD is sometimes called a
binary design.

We also observe, by definition of BIBD :
b b

Zln,_, =Y n?=r;i=12..,v) ...(6:263)

- j=1

v v

;l n; = ‘_21 nit=k;(=12..,0) ...(6:263a)
b

Zln,-j mi=h; G21=1,2,..,0), . .(6-263b)
=

since n;; ny; = 1 if and only if ith and /th treatments occur together in the jth block otherwise
it 1s zero and they occur together in A blocks.

If N’ denotes the transpose of N then

I - . ] i i
‘ ? 1j ; nyng .. JZ nyjny; r A 3 A
2
. | JZ Ny My JZ My .. ngny, R gadnip ol (F8a)
: : ‘] SRS e g _ .(6-264)
i Jznw ny; ;nvj ny ... Jz I‘LUJ2 A A A r
] o i/
Theorem 6.2 | e
Proof. 1,et u;; d Mv-1)=rk-1). -.(6-265)
(6:264), we i enote by E,,, the m x n matrix all of whose elements are unity. From
B
1

=[r+r@-D]

vx1 ]J
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— Ty

NN’ E,l = N(N' E.l)
By Ay ... m, | | 1] [ Tn, | B
B B ... By | | 1 X ng k
=N ; . Al 1 sl ) =N ) T”rﬁm ™
' ' | o : : >
n n ! ' , '
15 25 n.g 1 | z na K
i Ny Ry | | 1 | Iny | En
x . , s
ik n Ry ... ny | | 1| 2 ny; r
. E - é ‘r . ! - k - : - k ) ?r& -
My1 Ny Ny | 1 '
- Jexb | |bx1 ZTL,J r lexi
= kr E‘Dl - - - -
From (6-266) and (6-266a), we get 6-26%c

[r-f—l(v—l)]E“:krE,l = r+ilw-D=kr je, Mv —1) =r(k — 1), as desires

ey is k, each block gives rise to #C; pairs and s
5 number of treatment pairs in all the blocis is b C,, SIHne:cZiﬁ

lc,—b‘&c = )u)(v— = bk
.. ),(v_[ - E—1
) : . )

) Av-1)=rr - 1), as desired.
Theore;n 63 b2 v (Fisher’s Inequaisy) g
Proof. From (6-84), the determinant of the matrix N N
r A T F S el
T A
Adding 2nd e \ i r
na, 31’d, vth coll]mns Al -
from column, we get o the first colump and taking [r + (v — 1) A] commo®
1 AT R
A
i B ¥ov ) .
e ! A
RS | P, 0 ¢-2 o 5
ﬁr‘:, 3 : ¢ s b+ - DAl 0 o (-n ?
| B A A :
O 0 i) (r -_— l)

vee
e (Su
r v (v ;)1) Al (r = ayv W&pﬁmmzv b::a:he i el
(-1 column)
e [Using (6-265)) .(6:2680)
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| 20, for if r = A then from (6-265), we get
(U—-l)=(k—1) =D v=~F

dicating that the design reduces to r?{ndomised,block design. Hence, N N’ is non-singular
and consequently 2ok (NN) =, ..(6:269)
gnce v is the order of the matrix N N’
But Rank (N N’) = Rank (N)
Rank (N) =v [From (6-269)] ..(6:270)
But since Nis av X b matrix, its rank can be at most b.
p=rank N<b = b>v, asdesired. ...(6-270a)
Deductions. (1) rzk
Proof. We have vr = bk = r =% -k
Since b>v,weget rzk
(i1) bzv+r—Fk ..(6-272)
Proof. We have v—Fk 2 0 and r—-k=0 [From (6-271)]
-k r-k)20 = (%—1) W20 ie, Fr-B-C-BZ0
v—]:-—UZr—k = bzv+r—Fk [. vr =bkl
‘J’té»sﬂﬁmetric BIBD
Definition. A BIBD is said to be symmetric if p=vandr=k
In this case the incidence matrix N is a square matrix.
Substituting r = £ and b = v in (6-88a), We get
INN | =gyt o [N | | N | =20 0P tie | N|2=r2 =N ..(6-273)
v-1
IN|=tr(r-2" o N =N - (6:274)

(r -il)ncemut!he‘ determinant of the incidence matrix N is an integer, hence when v 1s even,
18t be a perfect square.

Remar 3 : -
Wuqu:,:_l' Necessary condition for a gymmetrical BIBD with v as even 18 that ( r — A) must be a

£ B 2. 168 i
Y Nis the incidence matrix of BIBD, then
219 i) every row sum is r,
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BIBD Treatments
P g i
STl 2
; : 11100 0
2 e 100 1 10
S Nes=| 0 1 0 1 0 1
8 0 01 0 1 1
Blocks 9 3
5 2 :
6 3 4

i is 3 = n sum is 2 = & and the inner
We note that everyrow sum 1n N is 3 = r, every colum product to
two rows, e.g., say 2nd and 3rd rows is |

il
a—
I
>

(100110]

—_O O~

L
Wem 6-4. In a symmetric BIBD, the number of treatments common between any tu
sis A.

Proof. We have already proved in (6-84) that
r A A .. A r-2 0 0 .. 0 ] [a A .i]

A r A ... A -
NN’ - g . OrXOO

. - . . N . N » + . : [

. . . > ° . ’ J
;] o R r_]uxu -0 0 0 ...r-2 Lx Rp—
=(r-M1,+AE,, . b .(6:279
where 1, is a unit matrix of order p.

Also for a symmetric BIBD, we have (for proof, see remark below) :

" 1
NNy < I - Ap } = sl A
— L/ vy ) = ar
Pl "2 = (NN -r_l[lv_’TZ‘EUU] (62
Premultiplying py (N, weget N-1-_1 NP A e (6217
But i : r-a Y T ENE,
ut it can be easily Vverified that for Symmetric BIBD
N’ EU =N E =P E k i
v vy iy = Euv E ' 78'
= r Evv o~ Evv ( r =k) (62

Substimting in (6-277), we get
Pmmmlhplymg by N, we havye
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From (6-275) and (6-279), we get for a symmetric BIBD

/ )
NEN=NN— =
NN =NN, ..(6-280)
Thus, the inner product of any two rows of N is equal to the inner product of any two
columns of N, i.e., A.
Hence, in case of a symmetric BIBD, any two blocks have A treatments in common.
(N N’ ) . ’
Remark. r INN |AdJ (NN’ A1)
i A /8
g 2 A r A
The cofactor of diagonal element of NN’ = .
A A ' f{v-1xw-1)
-2 +@-2N=-V2[r+@w-1D2r-}] le.f. (6-269)]
=r—W-2[rk-A [- b=DA=rk-1]
=2 (r—AP-2-A(r—A)Y-2=A,(say). (' r=Fk for symmetric BIBD) .(2)
The co-factor of off-diagonal element of N N’
A A A A 0 0
o X T A Ol ¢ SEled (r—=»2) ... 0
A x . r (y_])x(v—l) )\. 0 ke (r—).) (v—l))((\'—l)
=—A(r-Ar-2=B,(say). )

Since N N is etric i.e, N N’ = N’ N, the transpose of the matrix of cofactors of elements of
N'N"is same as the matrix of cofactors of N N,

Also, for a symmetric BIBD,
lNNll _rZ(r }')V 1_ C (say) [FI'OIII (6273)] ...(4)
S\lbmmtmgﬁ'om (2), (3) and (4) in (1), we get . b
Af¢ B/IC ... BIC | R 4 A
l—ﬁ w5 P
(NNy1-| B/C A/C .. BIC A A A
1 R >
g r2 re r
(r—=»\) h b :
R LA
B T2 e W'" l"ﬁ_vxv
A g
- 2
A A
T i

i
Tl

|
Yl
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LIg :
g T
1 v

A

E -l
Theorem 6-5. If N is the incidence matrix of a symmetric BIBD, then :
(NN)WN'N=(r-MN N+ LE, -

Proof. For a symmetric BIBD, we have :
N'N=r-MI +2AE,, N

= N'NNN=NNI[r-VL+AE,]=r-AONN+ANNE, |
=r-MONN+AN'NE,)=(r-MNN+AN (2 E,) (From 5y,
=r-MONN+MNE,)=r-ANN+MEE, [From (g

=(r-MN'N+M2E,

6:13-4. Resolvable Design. Definition. A BIBD with parameters v, r, b, k and Ajgy,
to be resolvable if the b blocks can be divided into r groups or sets of b/r blocks' eagll. b/ by
an integer, such that b/r blocks forming any of these sets give a complete replication of dlls

v treatements.
TABLE 6-76 : BIBD

Blocks Treatments

For example, let us consider the BIBD 1 1 2 .
with parameters v =4,6=6,r =3,k = 2 2 3 4 First set
and A = 1, as given in Table 6-76. 3 1 3

Here b = 6 blocks are divided into r = 3 2 9 4 Second set
sets each of 6/r = 6/3 = 2 (integer) blocks.
Moreover, each set contains each of the 5 : | 4 i set
treatments occurring once and only once. 6 2 3 e

Also A =1.
Hence, the above design is resolvable BIBD.
Theorem 6-6. For o resolvable BIBD with parameters v, b, r, k, A

b2p4r-1 7
Proof. Since the design is resolvable, b /7 must be an integer, equal ton (say), k- ‘
b/r=n = b= 2
But for a BIBD o v
.25
vr = bk = vr = y ) = e
Also for a BIBD . e ;
9840
r(k—l):k(v—l):k(nk—l) [From(G
i rgl(’:tk—l)akn(k~l)+ln—7x Aln—-1)
-1 R =1 o ke P O D
rednoim-1) B [
k-1 !

gmdlandn are al ‘

Jud®
S0 in f we cont
integer. © Integers, from (6 285),



B

6:135
. ible let
W’lfposSIble
No b<v+r-1), ie., b=pr<r=1 (%)
¢ rin-1 <@ (—kl) [From (6-284)]
B rik-1)
p rin-1) < 5 [ rk-1)=Mv-1)]
Aln-1)
« ————-k ] < 1,

which is & contradiction of the fact that Aln - 1)/(k — 1) is an integer. Hence, our assumption

(#) is wrong and we must have
bzv+r-1

Aliter. The ipcidence matrix N of the design consists of r sets of b/r rows each, where

any set of Tows 1S such that it occurs once and only once in each column of the set. By

adding the 1st, 2nd, ..., ((b/r) — 1}th row, to the (b/r) th row of a set we obtain a row

consisting of ones only. Moreover, since there are r sets, for each of these sets the rows

add up to the same vector (1, 1, ..., 1). We know that if any elementary row

transformation makes r TOW vectors identical then the rank is at least reduced by (r-1).
Hence using (6-270), we have

v=Ranstb—(r—1) — b2v+r-1

6135, Affine Resolvable Design.
Definition. A resolvable design is said to be affine resolvable ifb=r+v-1 and any two
blocks from different sets have k2 [ v treatments common where k2/v is an integer.

For example, let us consider the resolvable design of § 6-10-3 with parameters v = 4,
b=6,r=3,k=2and A=1.

We observe that the condition b =v + 7~ 1 is satisfied. Also (k2/v) = 1 (integer) and any

two blocks from different sets have only one treatment (A = 1) common. Feence, the design is
affine resqlvable.

mﬂh’ sis of Balanced Incomplete Block Design. (Intra Block Analysis of
BIBD]. method of analysis developed by F. Yates by the use of standard Least Square

Technique is sometimes referred to as the ntra-block’ analysis, i.e., the analysis without
recovery of interblock information.

Consider ‘&’ units of material comprising b blocks to which v treatments are applied such
that each treatment is replicated 7 times subject to the conditions of the BIBD.

LetN = (n;) be the incidence matrix of the BIBD, where

n; =1, if ith treatment occurs in the jth block
= 0, otherwise
T?‘“ as given in (6-263), (6-263a) and (6-263b), we have

j=1

B ?iiﬁ =1,2 v; j=1,2, . b) be the observation recorded on a unit of the material

.o SEARE St trons: i 2 77 o be in the jth block where (i, j) runs through the set
, mathematical model 18

pati+bi+Ej for (i, j))€ D ...(6:287)

b % .
> nﬁ=j§1nb3=r : O Mg = _§1nij2=k and _E.ln;_,- n,-_,-:k,(;;el) ..(6:286)
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‘ ’ f the ity
=1,2, ..,v)is the effect 0 i treatm
where i is the gm:z;ﬂ;“n:ta:f t:‘f‘f:‘jt&‘ ti;l(:)ck and ¢, are the v x r mtra(—iblock errorg Whiil}lt' :
& -umodl' " toiob’ir:l ndently normally distributed with mean zet;?a??hecfmmon Varign,
?:. £ are i 3 N (8(;)“0 %), In the intra block analysis we assume reatment effGCtsa;‘&
l;h;c-hucﬂectn are fixed, though unknown.

inei es, the normal equations for e
cording to the principle of least squares, :
(v +¢)L:";;ipa§amewm t,(=1,2,..,v);b,(j=1,2,...,b)and n are obtained
the error or residual sum of squares.

- E guzz Z (yu—p-ti_bi)z

Lpebh LpeD

Equating to zero the partial derivatives of E w.r.t., B, t; and b;, we get the Normy
equations as

Stimating t,
on minimiﬂing

ez ¥ (Vy~f-1,~B) =0 (6987,

a” WjHeD

"}El—z Z (y, —a—‘[t—Bj)-_-O (6287b

dt, Frihl

Je by

oF A

;,[;;B-Z“Zbi (y‘j—u-t‘--ﬁj)-o (6287(,"
where 1, 1, and fi are the least square estimates of p, ¢, and b; respectively, D, is the set ofr
values for which (i, J) € D for given i and D; is the
given j,

set of & values for which (i, j)e D fn

In order that the get of equations (6-287a), (6-287b) and (6-287¢) has an unique solution,
We must impose the restrictions
v b

X y=0, L B=0 (6289

iw1 J=1
O BTaigives: Ty py ) I i T T 16289

, . { )j
Q;J)CD ‘l;j)QD (l,j)ED

Now ).

t‘.z Ti|= z) = e
hjje n : i j‘ZD‘ ') “‘."'(rtt) "5‘_..41,-0

Similarly, 2 | i
3 “'-”z‘ ot : fz (jczo, B”) - ,Z Bi=0 [From (6:288)] ...(62%%
Substituting in (6.289) v get

)
[From (6-288)) (6290

Z
ﬁ.-“-ﬂ.l.L' u: v (6291)
ru / g
"j.zb‘ﬂj'o =3 T,—=ry..+r1:,—+ zZ B
byt ™ ’ JE€ D;
fjo"th'“thl'“i;ment.F‘uﬂ;her,sin D; is the =
: Wf.m@t{'lmdihuaﬁxedvalue,wﬂ?ﬁte

' ,.e.‘. ¥

o XUTES
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pesion 6.137

= h
T,jzr y ..+rT,‘ & Z n’jB,
7
j=1
bserve that the estimate of
2 (6'292) we 0 mate of a treatment effect is n
el o lon

rved tl‘_eatment mean minus the grandmean, since the bjock effectiecliﬁoof ﬂée e
me way into all the observed treatment means. For example, a treatmr;(r)lt ex;l;er k1>n
’ Yy be

...(6-292)

sd : . .
EZSOured by oceurring only in blocks with high block effects.
gimilarly from (6-287¢), we shall get
Bj=ky. +kf;+ Z_ln,-, ¢ ...(6:293)
ghere B; = Yy, is the total yield from the jth block.
ie D,
: B, _ 1
The quantlty v 72" -y = B] + E Z nlj T, (6294)

1=1
may be called the estimate of the jth block effect ignoring treatments.
Substituting the value of B, from (6:293) in (6-292), we get

b M
Ti=ry__‘+rt,¢+% )y [nij (Bj—ky—,_—z n"jrp)]
1

=1 j=1 j=1p=1
b v

1 .

=r—y 22 iy ...(6:295)
j=1p=1

o niB; _

The quantity : Q=Ti-X —3 ...(6-296)
S

: adjusted total yield for the ith treatment. The

is called the ; : t total or the 3
B e dureient o0 treatment total T, the sum of the jth block

adjustment consists i btracting from the . . )
average Bk (as:rl:rz,c;: ;itld ;er ;Jlot for the jth block) for the blocks in which the ith

treatment oceurs.
Thus from (6-294) and (6-295), we have

P 2
Q; =rt-g Y 2 niingT
j=1p=1

T
—---—k

b
LTRLY
=1

J

[Using (6-286)]
(‘.' 2 T,’ = 0 )
=1

[From (6-265)]
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k | - Z idy v) L AB.6¢

Q = ): T » t=Q AV P (=1 % 22T

4 }\,\' (‘;.29’7’

If we write : b= kr 1)

we ;
Then, =g
It may be remarked that E < 1, since
y b _Mh-D w-v .y (- Ay-1=rk—1andv>h | (B

=k.r k(\-—l) vk -k

The quantity ( 2 ., Q ) is the sum of squares due to treatments after adjusting for bloek
eq 1 X

i=1

effects. Thus \ ) )
S 8. Treatments (adjusted) = 21 1,Q; = ‘Zl %3— .. 626
The quantity )
él (B/4k) = n py .= (B?k) - % l . ”}:; Dy,.,r = 12_‘,1 (B#k)—-C.F. ..(630

Under the model (6-287), the residual sum of squares is given by :

v b
Z b’u =T _BJ)2— 2 yi12— n py— - 2 T, T - Z B/ B/
ijeD (i,j)e D i=1 j=1

The sum of the squares due to ﬁ, t, and B; being given by (n =vr = bk)

S, bt)=nny + ZTT+EBBJ RO y+ ZBB+ZT1

i=1 j=1 (,j)e D Jj=1 ’

=u§(‘§pyu)+23 B+ITu=R 2B+ T Bp+ YT
=YX +B)B+X T 1,

J

i=]

Substituting for 1 + B, from (6:293), we get

b 5
I ‘ :
S(p'b; !) - J§| Ik (BJ- z nutl)BJ]"' 2 Tltl
=]
= }: (BAk)+ X 1 b "
P2 E‘ i (T, - }: ny Byk) = ZI(B,%HE L Q
J= T
" _:‘nll}l..* 2 “"'-nui..)+ L e
f'i:'-_‘..' inl )

ock ignoring treatments, ; . + 1t is (unadjusted) block o

“ Moek analysis of BIBD ig given in Table 677



MYkt 3 0 =~ 6'1 39
Xren
ogslGN of B
TABLE 6:77 : ANOVA FOR B.I.B.D. (INTRABLOCK ANALYSIS)
Source \ a.f Sum of Squares EM.S.S.) j}
. I 2 gL
ted) b-1 4 .
jetween blocks (unadjus . El B2 - (G%/bk) |
v v |
. i 2 2 112 |
| ‘i petween treatments (adjusted) v—-1 El (Q/rE) o>+ rE E,l e
: | . |
| 1‘1ntra block error bk —b -y + 1 | By subtraction o’
e 2 y?— (Gbk) T
Total bk — 1 (,Lj)eD f
=R.SS. -CF. |
In the above table G = ) ¥i; 18 the grand total of all the observations and D, b
) e D (t,j))e D
the raw sum of squares (R.S.S.).
For testing the null hypothesis : Hy: ty=ty=...=t,,

the treatments (adjusted) mean s
usual.

If we are interested to make inferences about the block effects, the (adjusted) block mean

sum of squares is to be compared with error mean square. The adjusted block sum of squares
tan be computed from the following identity :

Block S 8. (adjusted) + Treatment S.S. (unadjusted)
= Block S.S. (unadjusted) + Treatment S.S. (adjusted) ...(6-301)

quare is compared with the intrablock error mean square as

1
[ Where, Treatment S.S. (unadjusted) = s 2 T2-CF. ---(6-301a)
i=1

Raam ~



Mple 6-21. The data in Table 6-78 gives the results of an experiment for comparing 7

treatments in 7 blocks of 3 units each, there thus being 3 replications of each treatment.
Analyse the data.

Treatments \ Blocks
1 2 3 4 5 6 >
’1 1 50 42 9] o B - o
| " = — 118 94 94 " £
li : i o — 64 — 80 b
it \ # - i — — 53 31
| 5 . 44 _ - B 65 B ol
| 6 s 102 — — 119 92 ‘.
| : e e — 8 - o 37

Solution. The above design is a BIBD with parameters: v=7, b=7, r=3=Fk. L=1
To carry out the analysis of the design we compute the following quantities -
T; = Total yield for the ith treatment from all the blocks, G = 1,2, ... 7)

B, = Total yield from the jth block, G =1,2, ..., 7)
3 n;; B; = Total yield from all the blocks in which ith treatment occurs [(i = 1, 2,
J

"
For example,

Zny B, = Total yield from all the blocks in which 1st treatment occurs.
=B, + By + By = 170 + 182 + 281 = 633
2nyB; =B, + B+ Bg=170 + 196 + 225 = 591 ; and s0 on

7
Qel T agBilk; G=1,2,..7
i=1

i PR R R
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TABLE 6-78A : CALCULATIONS FOR VARIQU§ SiS

Treatment 2 i S T e
| i B B;/k ; -

| | 2 znazus o8 et T
(ol @ Teol® [ o] o [m-0-6 ® 5
\ 1 183 170| 28,900 633 | 21100 | -28-00 781-00| 33 400
2 306 182| 83,124| 755 | 251.67 54-33 295175 | 93 gec

| .8 220 281| 78961 591 | 197-00 23-00 529:00 | 4849,
& 156 196| 38,416| 628 | 209-33 ~53-33 2,84409| 249
5 163 278| 177,284| 570 | 19000 ~27-00 729:00| 26569

6 313 225| 50,625| 685 | 22833 84-67 7,169:00| 97959

7 113 122| 14,844, 500 | 16667 ~53-67 2,880-47| 12769

‘ -—t —

| Total | 1,454 | 1,454] 3.22.194 1 [17,887:31| 337,68
If y;; denotes the yield from the experimental unit receiving the ith treatment in the jth

block,
. G _(1454)* 21,14,116 ,
&= “_,ﬂze Y= 1454 ; CF.=g5r= o1 = g1 = 1,00,67219
RawS8.= % 2=115730 ; Total S.S.=RawS.S. —CF - 15,057-81
(,y)e D

i
Blocks (unadjusted) S.S. = % y

‘ ((c.f. (6:299)
1

Where = ?ﬂ =N rk = A
kr

Treatments (adjusted) S.S. = 17’8877'31 X3 766599
Error (Intrablock) S.S. = Total S.S. - Blocks (unadjusted) 8.8 — Treatments (adjusted) S5
= 15,057-81 - 6,725.81 — 7,665-99 = 666-01

TABLE 679 : ANOVA TABLE FOR BIBD (INTRA-BLOCK ANALYSIS) 1
Source of Variation S.S. d.f Mean S.S. Var i‘_’lc_e._l_z—ﬁnfo/[
Blocks (Unadjusted) 6,725-81 6 1,120.97 %%’L "o |

2 ;;_;‘mmmm (Adjusted) | 7,665.09 6 1,277-67 '1-’-327;,‘72"‘56’7 e |

‘58, the variance ratio due to treatments 15



PE_SIGN OF EXPERIMENTS 6.1

ie., the treatment effects are equal is rejected at 5% level of si
that the treatments differ significantly from each other.

Ma find At arhinh nair nf traatmanto Aiffasm ~fni i1 - S

gnificance. Hence, we coneclud



